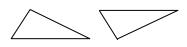
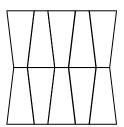

Congruence: Cumulative Review

Write a congruence statement.

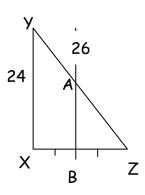


2.

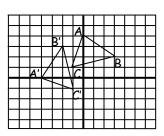


Describe the transformation.

3.



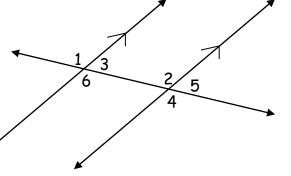
4.



Determine whether the following represent a rigid transformation. Explain.

5.

6.


Determine the indicated angle measure(s).

7. m
$$\angle$$
2 if m \angle 3 = 77°

7. m
$$\angle 2$$
 if m $\angle 3 = 77^{\circ}$ 8. m $\angle 4$ if m $\angle 1 = 115^{\circ}$

9. m
$$\angle$$
6 = $(2x+1)^{\circ}$
m \angle 5 = $(\frac{1}{2}x - 6)^{\circ}$

10. m
$$\angle$$
6 = (60x + 40)°
m \angle 2 = (20x +120)°

Name:	Date:
Answer Key	
Congruence: Review	
Congruence: Review 1. $AX \cong XC$; $BX \cong XD$; $\triangle ABX \cong \triangle ADX(SAS)$; $\triangle CBX \cong \triangle CDX$ (SAS) 2. $AN \cong LP$; $SX \cong BX$; $CX \cong TX$ ($ST \cong BC$) 3. Reflection and translation. 4. Rotation and translation. 5. No. This is a dilation. Because the size of the object changes, it is not rigid. 6. Yes. Size and shape are retained. The corresponding lengths are congruent. 7. $m\angle 2 = 103^\circ$ 8. $m\angle 4 = 115^\circ$ 9. $x = 74$; $m\angle 6 = 149^\circ$ $m\angle 5 = 31^\circ$ 10. $x = 2$; $m\angle 2 = m\angle 6 = 160^\circ$	

www.softschools.com